PARTNERSHIP BETWEEN TWO SUCCESFULL COMPANIES

the same year, 1969, AMC Mecanocau**cho** and **Getzner** were founded. Both companies were developing supports for isolating airborne and structure noise. Both companies have almost five decades of experience.

together in industrial projects in Spain with a completely new product: Sylomer®. Since that time, the technical Departments

At two different locations in Europe, but in of **AMC** and **Getzner** analyze projects together solving extremely complex problems of noise reduction in construction and

Currently **AMC Mecanocaucho** and **Getzner** are not connected just with a contract, but also they have a friendship as Towards the end of the 80s, both compawell as a long list of successfully complenies knew each other and started working ded projects. With this team the solution to your noise problems are in good hands!

DOWNLOAD CATALOGUE:

ISO 9001:2014

ISO 14001: 2014

DISCOVER OUR **NEW APPLICATIONS**: available at Android and IOS.

VIBRATION ISOLATOR PRO

et your phone discover THE MAIN
DISTURBING FREQUENCIES of you

ACOUSTIC HANGER PRO

Discover the app that helps you **FIND THE CORRECT ACOUSTIC HANGER** for

Aplicaciones Mecánicas del Caucho, S.A.
Industrialdea Parc 35 A.
E-20.159 Asteasu. Spain.
Tel.: + 34 943 69 61 02
Fax: + 34 943 69 62 19

NOISE REDUCTION MOUNTS

150 MODELS OF ACOUSTIC HANGERS The widest range on the market

The graph and table show the airborne noise reduction results of a suspended ceiling structure with one, two and three gypsum plasterboards, with and without AMC Akustik+ Sylomer[®]. The test was made in an external Lab (Labein). It is significant, that the noise reduction of a structure with Akustik+Sylomer® and a gypsum plasterboard is better than a structure of three gypsum plasterboards.

Airborne noise reduction Din ISO 140-3

_ _ _ _ 1 Board without elastic mounts

1 Board with Akustik+ Sylomer® suspensions

- Ceramic pot slab ceiling with Rw 52 (0,-3) dB airborne isolation.
 Mineral wool layer (5cm, 20Kg/m³).
 Metallic Profile.
- 4. Gypsum plasterboard.

RW sound isolation index	Without suspensions (M6 rod)	With suspensions Akustik + sylomer.
1 plasterboard	71 (-4; -10) dB	75 (-4; -10) dB
2 plasterboard	73 (-3; -9) dB	75 (-3; -8) dB
3 plasterboard	74 (-3; -8) dB	77 (-3; -8) dB

ROSENHEIM

The next graph and table show the structure borne noise reduction results of a wooden structure with and without **AMC Akustik+Sylomer®**. Although it is a complete wooden structure, it could achieve a 14 dB reduction in structure borne noise, passing the German regulations. This test was made in an external Lab (IFT Rosenheim, Germany). Structure borne noise

Long term behavior

FLOATING FLOOR MOUNTS

FZH+Sylomer® Range

Laboratory measurements

Test specimen: Floating reinforced concrete slab of 100mm thickness, elevated at 25mm with a system of antivibration mounts as described on the above picture. **Employed supporting slab:** Reinforced concrete slab of 15cm thickness, tested in 26/06/09 ($L_{n.0}$)

Volume of the receiving room: 64.7m³ Volume of the source room: 53.6m³ **Surface of the test specimen:** 13.86m² (3.3x4.2m)

Estimated specific mass: 250Kg/m² **Chamber temperature:**17.3 C° **Chamber Hygrometry:** 77%

Airborne insulation according to UNE EN ISO 140-16:2007

Laboratory measurements according to UNE ISO 140-3:1995

Test specimen: Floating reinforced concrete slab of 100mm thickness, elevated at 25mm with a system of antivibration mounts as described on the above picture.

Employed supporting slab: Reinforced concrete slab of 15cm thickness, tested in 26/06/09 (R_{WITHOLIT})

Volume of the receiving room: 64.7m³ Volume of the source room: 53.6m³ **Surface of the test specimen:** 13.86m² (3.3x4.2m)

Estimated specific mass: 250Kg/m² **Chamber temperature:**17.3 C° **Chamber Hygrometry:** 77%

Veighted gain according to UNE-EN ISO 717-2:1997 ΔL_{w} ($C_{L\hat{A}}$): 34 (-11) dB These results rely on the realized tests under an artificial source unde * Ln ≤ indicated value and ∆L ≥ indicated value (measurement limits)

